

SCIENCE Year 9 Curriculum End Points and Key Vocabulary

	Autumn Term	Spring Term 1	Spring Term 2	Summer Term 1	Summer Term 2
Ethos Links	STEM – generating electricity, insulating houses Sust. – renewable and non- renewable energy	STEM – explaining how organisms work, cell replication. Looking at the design of the microscope and how this was developed. How stem cells are used. STEM – using models to explain observations. How theories change over time and using experimental evidence to develop theories	 STEM – explaining how organisms work, cell replication. Looking at the design of the microscope and how this was developed. How stem cells are used. STEM – using models to explain observations. How theories change over time and using experimental evidence to develop theories 	STEM – calculations, using electricity and building circuits. Using thermistors and LDRs in alarms and designing circuits to make use of these Sust. Making systems more efficient	STEM - explaining how the body works, how tech can be used to treat coronary heart disease
	Working Scientifically Project – Energy (P)	 Organisms – Cell Biology (B) Atomic Structure and the Periodic Table 	 Organisms Cell Biology continued Matter – Atomic Structure and the Periodic Table continued 	 Electromagnets – Electricity (P) Cell Biology continued 	 Electromagnets Electricity continued Organisms - Organisation
Learning End Points	 By the end of this unit students will know and understand: What is meant by a system and the different energy stores The conservation of energy and the pathways through which energy is transferred 	 By the end of this unit students will know and understand: Cell Biology ➤ The relative size of prokaryotes and eukaryotes, what organelles are present in each and their functions 	 By the end of this unit students will know and understand: Cell Biology ➤ What chromosomes are and where they are found ➤ How cells divide using mitosis 	 By the end of this unit students will know and understand: How to draw and interpret circuit diagrams using standard circuit symbols What is meant by charge, current, 	 By the end of this unit students will know and understand: How cells, tissues, organs and organ systems are arranged The structure and function of the digestive system

≻	How to reduce wasted	\triangleright	The key parts of a	\triangleright	What stem cells are and		potential difference and	\succ	What enzymes are,
	energy		light microscope,		where they are found,		resistance		how they work and
\triangleright	Where humans get their		how they have		and the function of	\succ	The relationships		what they are used
	energy from, and how		developed over time		them in embryos, adult		described by Q = It and		for, and factors
	energy from food can be		and why they are		humans and in the		V=IR		affecting enzymes,
	transferred from the		important,		meristem of plants.	\succ	The factors affecting		including
	chemical store to the		comparing them to	\triangleright	How stem cells can be		resistance		carbohydrases,
	thermal store		electron microscopes		used in medical	\succ	The relationships		amylase, proteases
\triangleright	The words accurate,	\blacktriangleright	How cells are		treatments and food		between current and		and lipases, the
	precise, reproducible,		adapted to their		production and the		potential difference in a		products of
	repeatable, resolution		function		ethical issues		fixed resistor, filament		digestion and what
	and anomaly	\blacktriangleright	How and when plant		surrounding this.		lamp and diode.		they are used for
\triangleright	The errors random and		and animal cells	\triangleright	How substances move	\succ	How temperature	\succ	The role of bile in
	systematic, the effects of		differentiate.		into and out of cells		affects resistance in a		digestion
	these errors and how	\blacktriangleright	How bacteria cells		using diffusion, and the		thermistor and how	\succ	The structure of the
	they can be reduced		divide		factors which affect the		light intensity affected		heart and lungs,
۶	The equation work done				rate of this.		resistance in an LDR,		including
	= force*displacement,	At	omic Structure and	\triangleright	How surfaces and		and applications of		adaptations
	and can use to it	<u>the</u>	<u>Periodic Table</u>		organs are specialised		them	\succ	The three different
	calculate all three	\triangleright	That atoms and		for exchange in	\succ	Current, potential		types of blood
	quantities.		elements are		multicellular organisms		difference and		vessel and how
\triangleright	How to calculate power,		represented by	\blacktriangleright	What osmosis is and		resistance in series and		their structure
	energy and time using		chemical symbols,		when it happens		parallel circuits.		relates to function
	the equation P=Et		and these are found	\triangleright	What active transport is	\succ	The current, potential	\succ	The composition of
۶	What is meant by		on the periodic table.		and when it happens		difference and		blood and the
	efficiency and how it can	\triangleright	What atoms,				frequency of mains		function and
	be calculated and		elements,	<u>Atc</u>	omic Structure and the		electricity in the UK		adaptation of each
	compared		compounds and	Per	iodic Table	\succ	The difference between		component
\triangleright	How to use and		molecules are.		How the periodic table		AC and DC	\succ	The causes of
	manipulate the		What a mixture is		is arranged, and what	\succ	The key components of		coronary heart
	equations; $E_k=0.5mv^2$,		and how they can be		formats this took in the		a 3 pin plug		disease and how
	E _p =mgh, E _e =0.5ke ² to		separated depending		past, as well as what led	\succ	How to use the		this can be treated
	calculate any quantity in		on physical		to the changes.		equations P=VI and	\succ	Causes of ill health
	the formula		properties		How metals form		P=I ² R, calculating		(communicable and
\succ	How energy is	\triangleright	How research led to		positive ions, and non-		power, current,		non-communicable
	transferred from hot to		the development of		metals form negative		potential difference and		disease and
	cold areas, and how this		the model of the		ions		resistance		lifestyle factors)
	happens		atom, and the stages						and how different

	 What thermal conductivity is and how this can be used to choose insulating materials What specific heat capacity is and how to calculate it using ΔE = mcΔθ How energy transfers can be reduced in a house How electricity is generated to meet global demand from renewable and non-renewable resources, and the advantages and disadvantages of each. 	 of this model to the current model used now, including the models by Thompson, Bohr, Rutherford and Chadwick. How Rutherford's alpha scattering experiment led to changes in the atomic model. The relative mass, charge and position of the 3 subatomic particles How the numbers of protons, neutrons and electrons is calculated. How electrons are arranged in atoms 	 The differences between the chemical and physical properties of metals and non- metals Why the elements in group 0 are unreactive and what they are used for The chemical and physical properties of group 1 and group 7 elements, uses of them, and how this relates to their electronic configuration The properties and uses of transition metals 	 How power is related to potential difference and current, and energy transferred What is meant by the national grid, including the role of step up and step down transformers What causes static charge How an electric field is formed and how two electric fields interact. 	 types of disease interact Types of cancer and how lifestyle factors can affect risk Plant tissues and how the structure is related to the function
ey Vocabulary	Energy Dissipate Efficiency Power Kinetic energy Elastic potential Accurate Precise Specific heat capacity	Diffusion Osmosis Active transport Stem cell Differentiation Prokaryote Eukaryote	Element Atom Ion Mixture Periodic Table Proton Neutron Electron Nucleus Transition metal	Current Potential difference Resistance Charge Electric field Thermistor Work done Coulomb Component Frequency Power National grid	Enzyme Artery Vein Capillary Plasma Communicable Immune system Cancer Mesophyll Xylem Phloem Meristem Stomata