	Autumn Term 1	Autumn Term 2	Spring Term 1	Spring Term 2	Summer Term 1	Summer Term 2
Ethos Links	STEM - Use of algebra throughout many different programming areas Milton Keynes - Link to MK business and their use of algebra	STEM - Estimation and bounds link to real life scenarios through engineering Milton Keynes - link to MK business through averages	STEM - Likelihood of events occurring and use of this within STEM areas	Sustainability - Volume considerations of packaging and other things and how to be sustainable STEM- Use of percentages in real life Milton Keynes - link to MK business	STEM - Drawings and scales - how similar shapes are used - link to careers	Sustainability - Charts and graphs linked to several different environmental factors Milton Keynes - Charts and graphs linked to the growth of Milton Keynes
Learning End Points	By the end of this unit students will know and understand: Algebraic Notation By the end of this unit students will know and understand: How to factorise single brackets How to expand products of two or more binomials	By the end of this unit students will know and understand: Properties of number By the end of this unit students will know and understand: How to use Venn diagrams to calculate Highest Common Factor and Lowest Common Multiple	By the end of this unit students will know and understand: Fractions By the end of this unit students will know and understand: How to multiply and divide mixed numbers How to solve problems with mixed numbers Ratio and Proportion	By the end of this unit students will know and understand: Equations, Inequalities and changing the subject By the end of this unit students will know and understand: How to solve multi-step equations How to solve one and two step inequalities How to change the subject of a	By the end of this unit students will know and understand: Angles By the end of this unit students will know and understand: How to derive and use the sum of angles in a triangle and use it to deduce the angle sum in any polygon	By the end of this unit students will know and understand: Transformations including enlargement By the end of this unit students will know and understand: How to identify congruent and similar shapes How to enlarge shapes with a positive scale factor How to perform a combination of transformations

Sequences

By the end of this unit students will know and understand:
$>$ How to recognise geometric sequences
$>$ How to use and find the $n t h$ term with sequences

Graphs (linear and quadratic)
By the end of this unit students will know and understand:
$>$ How to plot graphs in the form $y=m x+c$
$>$ How to identify the gradient and y intercept of a linear graph
$>$ How to plot a linear graph

Rounding, Estimation and Bounds
By the end of this unit students will know and understand:
> How to use approximation through rounding to significant figures to estimate answers
$>$ Limits of accuracy and begin to identify upper and lower bounds

Averages

By the end of this unit students will know and understand:
$>$ How to calculate averages from a table of values
> How to make comparisons between averages and spread
By the end of this unit
students will know
and understand: and understand:
$>$ How to write and simplify ratios in the form 1:n
$>$ How to solve proportional problems
$>$ How to solve reverse ratio questions

Probability including

diagrams

By the end of this unit students will know and understand:
$>$ How to calculate relative frequency and make predictions
$>$ How to construct and complete a Venn diagram and calculate
formula
involving one or two steps

Area and volume

By the end of this unit
students will know and understand:
$>$ How to calculate the area and circumference of a circle using exact values
> How to form equations to calculate the area and perimeter of shapes
> How to solve volume problems by using the inverse
$>$ How to calculate the volume of a cylinder using exact values

Percentage problems

 including interest
Similar shapes

By the end of this unit students will know and understand:
$>$ How to identify similar shapes
$>$ How to calculate scale factors between similar shapes
> How to calculate missing lengths using scale factors

Pythagoras and

 Trigonometry By the end of this unit students will know and understand:> Pythagoras' Theorem and how to solve problems involving right angled triangles.
$>$ How to calculate missing lengths and

Plans and Elevations and surface area
By the end of this unit students will know and understand:
$>$ How to construct views of 3D shapes including front, plan and side views
> How to calculate surface area of prisms
> Draw the net of any 3D shape

Loci and constructions

By the end of this unit students will know and understand
$>$ How to construct angle bisectors and perpendicular bisectors
> How to construct triangles

Charts and graphs (including scatter graphs)

	How to plot a quadratic graph given a table of values Compound Units and Measures By the end of this unit students will know and understand: How to use graphs to interpret compound units How to convert and calculate compound units such as speed, unit pricing and density to solve problems	Directed Numbers By the end of this unit students will know and understand: How to solve problems with directed numbers Standard form By the end of this unit students will know and understand: How to write numbers in standard form How to convert numbers from standard form	probabilities using it How to complete a tree diagram and calculate probabilities using it	By the end of this unit students will know and understand: The difference between compound and simple interest How to calculate decimal percentages using a multiplier	angles in triangles using trigonometry.	By the end of this unit students will know and understand: How to identify outliers How to use scatter graphs to predict trends and patterns How to construct and interpret a frequency polygon How to interpret a histogram
Key Vocabulary	Factorise Quadratic Coefficient Nth term Gradient Intercept Distance Density	Venn diagram Intersection Bounds Estimate Limits Standard form Decimal Powers of 10	Venn diagram Intersection Complement Tree diagram Branches Relative Frequency Part Whole	Multiplier Exact Inequality Inverse Subject Interest Compound interest Simple interest	Opposite Adjacent Hypotenuse Scale factor Polygon Exterior Interior Multiplier	Enlarge Scale factor Centre Face Bisector Perpendicular Loci Locus

