

SCIENCE Year 8 Curriculum End Points and Key Vocabulary

	Autumn Term 1	Autumn Term 2	Spring Term 1	Spring Term 2	Summer Term 1	Summer Term 2
Ethos Links	STEM – soundproofing, considering implications when planning fire work displays. Char. – Use of alarms to reduce antisocial behaviour STEM – understanding how substances behave STEM – energy stores and transfers, Sust – generating electricity, renewable and nonrenewable resources	STEM – explaining how the body works, evaluating models STEM – explaining how the body works, designing a menu. Sust. – making food choices STEM – Representing elements and compounds	STEM – designing shoes for different situations STEM – explaining changes in population, genetic engineering. Sust. – responsible breeding, endangered and extinct animals	STEM, Sust Designing houses to reduce energy loss, using levers in machines and to lift heavy loads STEM – Explaining chemical reactions, uses of exothermic and endothermic reactions in different products Sust. – efficiency in combustion reactions	STEM – Effects of climate change. Sust. – Causes/effects/solutions of climate change STEM – designing an electromagnet for a purpose	STEM – Explaining how the body works, use of respiration in food production STEM, Sust. – designing a greenhouse to maximise food growth STEM – Explaining observable phenomena, how loudspeakers and microphones work
	 Waves – Sound Reactions – Acids and Alkalis Energy - Energy 	 Organisms – Breathing Organisms – Digestion Matter – Elements and Compounds 	 Forces – Pressure Genes – Evolution and Inheritance 	 Energy – Work, Heating and Cooling Reactions – Chemical Energy and Types of Reaction 	1. Earth – Climate and the Earth's Resources Electromagnets – Magnets and Electromagnetism	 Ecosystems – Respiration Ecosystems – Photosynthesis Waves – Wave Effects and Properties
Learning End Points	By the end of this unit students will know and understand: Waves – Sound How sound travels in terms of particles and in solids, liquids, gases and in a vacuum How waves can be viewed and how their	By the end of this unit students will know and understand: Organisms — Breathing What breathing is and how our body moves air into and out of our lungs What gas exchange is and how the respiratory system is	By the end of this unit students will know and understand: Forces – Pressure How to calculate pressure on a solid and what things effect pressure How products are designed with pressure in mind to	By the end of this unit students will know and understand: Energy – Work, Heating and Cooling What work done is and how to calculate it What temperature and heat are How thermal energy can be passed on	By the end of this unit students will know and understand: Earth – Climate and the Earth's Resources The composition of the current atmosphere, the early atmosphere, and what caused the changes How carbon is recycled through the atmosphere	By the end of this unit students will know and understand: Ecosystems – Respiration What respiration is and why it is important The differences between aerobic and anaerobic respiration and fermentation

- form changes when the sound changes
- How the ear works and causes or permanent and temporary hearing loss.

Reactions – Acids and Alkalis

- What acids and alkalis are
- What pH is and how it can be measured
- How to name salts
- What neutralisation is and some everyday examples of where it might be used.

Energy - Energy

- The 8 energy stores and how energy is transferred
- The law of conservation of energy
- How energy can be released from the chemical store in food and how we can measure that
- How electricity is generated from renewable and nonrenewable resources, as well as advantages and disadvantages of this
- How to calculate power and the cost of energy.

- adapted to maximise gas exchange
- What lung volume is, how it can be measured and factors which affect it.

Organisms - Digestion

- What digestion is, the parts of the digestive system and how they are adapted for their function.
- The nutrients needed for a balanced diet and the foods they are found in
- The consequences of an unbalanced diet, including some deficiency diseases and their causes and symptoms.

<u>Matter – Elements and</u> Compounds

- The words element, molecule, atom, mixture and compound
- How symbols are used to represent elements and compounds
- Naming simple compounds made from a metal and non-metal
- How some groups of elements make up a sulfate, nitrate or carbonate.
- How polymers are useful to us and how they can have

- be suitable for different situations
- What causes fluid pressure, including gases and liquids, and why pressure changes with increasing altitude or depth.

<u>Genes – Inheritance and</u> Evolution

- What biodiversity is and why it is important
- How natural selection occurs and why it is important
- What causes extinction and the repercussions this may have
- What selective breeding is, how it works and why it is important
- What genetic engineering is, how it happens and why it is important
- The structure of DNA and the work that led to its discovery.

through conduction, convection and radiation, in solids, liquids, gases and a vacuum.

Reactions – Chemical Energy and Types of Reaction

- > The difference between chemical reactions and physical changes
- What exothermic and endothermic reactions are
- The differences between complete and incomplete combustion, why they happen, which is preferrable and risks of them
- What happens in a thermal decomposition reaction

- and living organisms in the carbon cycle.
- The causes and effects of the enhanced greenhouse effect and global warming.
- Finite and renewable resources from the Earth and how they are obtained.

<u>Electromagnets – Magnets</u> <u>and Electromagnetism</u>

- Magnets and magnetic field, including plotting the magnetic field of a bar magnet
- The Earth's magnetic field
- What electromagnets are and how to build them and factors affecting the strength of electromagnets

<u>Ecosystems –</u> Photosynthesis

- What photosynthesis is and why it is important
- Where photosynthesis happens, how the reactants get to the leaf, and how the products are removed from the leaf
- How to test a leaf for starch
- The structure of a leaf and how this helps it to do photosynthesis
- The limiting factors for photosynthesis and how conditions can be controlled to maximise plant growth
- The nutrients needed by plants for healthy growth and how to diagnose deficiencies

<u>Waves – Wave Effects and</u> Properties

- What transverse and longitudinal waves are and the differences between them
- Uses of ultraviolet and ultrasound waves
- How microphones and loudspeakers work

		negative effects on the environment				
	Frequency	Gas exchange	Pressure Fluid	Conduction Convection	Atmosphere Finite	Aerobic Anaerobic
	Amplitude Vibration	Breathing Digestion	Altitude	Radiation	Renewable	Respiration
	Vacuum	Small intestine	Biodiversity	Work done	Reduction	Glucose
	Acid	Adaptation	Natural selection	Exothermic	Electrolysis	Photosynthesis
Key Vocabulary	Alkali	Nutrient	Evolution	Endothermic	Greenhouse effect	Starch
, , , , , ,	Neutralisation	Deficiency	Extinction	Combustion	Magnetic field	Chlorophyll
	Salt	Formula	Selective breeding	Thermal decomposition	Electromagnet	Stomata
	Energy store	Polymer	Genetic modification	Repeatable	Core	Transverse
	Transfer		DNA	Reproducible	Solenoid	Longitudinal
	Energy resource					