

Further Maths Year 11 Curriculum End Points and key vocabulary

	Autumn Term 1	Autumn Term 2	Spring Term 1	Spring Term 2	Summer Term 1	Summer Term 2
Unit of Work	Algebra 3	Coordinate geometry	Calculus	Geometry 2	Reap and review	
Ethos Links	STEM - Use of algebra in many different areas of business and applications of equations	STEM - Use of geometry in engineering and other construction areas including architecture	STEM - Use of algebra in many different areas of business and applications of equations	STEM - Use of geometry in engineering and other construction areas including architecture		
Knowledge	By the end of this unit students will know and understand: Domain and range of functions • To understand what the domain and range are of a function are • How to state the range of a function given the domain • How to state the domain and range of a given graph Composite functions	By the end of this unit students will know and understand: The distance between two points • Use Pythagoras' theorem to calculate the distance between two points The midpoint of a line joining two points • How to find the coordinates of a midpoint of a	By the end of this unit students will know and understand: Differentiation using standard results • Differentiate an equation with one or more terms • Expand or divide equations to differentiate • Use differentiation to calculate the gradient at a given point. Tangents and normal	By the end of this unit students will know and understand: Using the sine and cosine rules together Use the sine rule and cosine rule to solve problems Lines and planes in three dimensions Use Pythagoras in three dimensions Use the sine rule and cosine rule in three dimensions	By the end of this unit students will know and understand: Recap and review	

	How to write a	line segment	• Use
	composite	given the	differentiation,
	function involving	coordinates of	substitution and
	2 functions	the end point	rearranging to
	 How to write a 	 How to find the 	calculate the
	composite	coordinates of	gradient and
	function involving	an endpoint of a	equation of a
	3 functions	line segment	tangent at a
,	 How to solve 	given the	given point
	problems with	coordinates of	• Use
	composite	the midpoint	differentiation,
	functions	How to solve	subsitution and
Grap	ohs of linear functions	problems using	rearranging to
	 Know the 	midpoints and	calculate the
	difference	endpoints of line	gradient and
	between sketching	segments	equation of a
	and drawing	Equation of a straight line	normal at a given
	• Sketch graphs of	How to use basic	point
	more complex	straight-line facts	Increasing and decreasing
	straight-line	to solve	functions
	graphs	problems with	Differentiate to
Gran	ohs of quadratic	coordinates	show whether a
0.00	functions	 How to use and 	function is an
	Know how to plot	apply geometry	increasing or
	a quadratic graph	facts to straight	decreasing
	from a table of	line graphs	function
	values	The intersection of two	The second derivative
	 Understand that 	lines	Calculate the
	all quadratic	Work out	second
	graphs have a line	graphically the	derivative
	of symmetry and	point of	Apply the second
	find an equation	intersection of	derivative to real
	for the line of	two lines	life situations
	symmetry	Solve	Stationary points
Inve	rse functions	simultaneous	• Identify when the
		equations	gradient of a
	 How to find the inverse of a 	graphically with	curve is 0 to
		two linear graphs	identify
	function given a	Dividing a line into a given	
	function	ratio	stationary points Classify
	To know and		
	understand that	How to apply ratio to	stationary points
	that when you	ratio to	as either

	ananta a Biasa a L	a a cualta at a			1
	graph a line and	coordinate	maximums or		
	its inverse	problems using	minimums.		
	function, they are	line segments			
	reflected in the	Equation of a circle			
	line y=x	Recognising the			
	Graphs of exponential	equation of a			
	functions	circle			
	 Use a table of 	 Deducing the 			
	values to draw an	radius and			
	exponential graph	centre of a circle			
	 How to state the 	from the			
	number of roots	equation			
	there are with	 Deducing the 			
	multiple graphs	equation given			
	 Solve problems 	the radius and			
	with exponential	centre point of a			
	graphs	circle			
	Graphs of functions with up	 Rearranging 			
	to three parts in	equations of			
	their domains	circles to deduce			
	 How to draw 	the centre and			
	graphs with two or	radius			
	three parts in their	Applying circle theorems			
	domains	to solve problems with			
	 How to deduce 	equations of circles.			
	the domains from				
	a drawn graph				
Кеу	Domain	Midpoint	Gradient	Sine	
Vocabulary	Range	Endpoint	Differentiation	Cosine	
,	Composite	Line segment	Derivative	Tangent	
	•	-		_	
	Inverse	Intersection	Stationary	Plane	
	Exponential	Simultaneous	Tangent	Three dimensions	
	Roots	Graphically	Normal		
		Centre	Maximum		
		Radius	Minimum		
		nadius			