

Maths Year 11 Higher Tier Curriculum End Points and key vocabulary

	Autumn Term 1	Autumn Term 2	Spring Term 1	Spring Term 2	Summer Term 1	Summer Term 2
Unit of Work	 Properties of number Linear graphs and sequences Surds Probability and probability diagrams 	 Simultaneous equations Direct and inverse proportion Curves and graphs Inequalities 	 Circle theorems Proof Functions Transforming functions 	 Transformations Constructions and loci Iterations Vectors 	Revision and recap	Exams
Ethos Links	STEM – use of exact calculations and importance of being exact within many STEM careers	STEM – Curves and graphs used to demonstrate exponential growth within bacteria	STEM - Proof is fundamental in mathematics and computer science for verifying algorithms and ensuring system reliability.	STEM and Sustainability – constructions and loci used within relation to landscape planning and gardening. Also used in relation to security cameras. STEM – use of enlargement in scale models		
Knowledge	By the end of this unit students will know and understand: Properties of number By the end of this unit students will know and understand:	By the end of this unit students will know and understand: Simultaneous equations	By the end of this unit students will know and understand: Circle theorems By the end of this unit students will know and understand:	By the end of this unit students will know and understand: Transformations By the end of this unit students will know and understand:		

- How to calculate highest common factor and lowest common multiple
- How to identify and interpret prime factors

Linear graphs and sequences

By the end of this unit students will know and understand:

- Common sequences including geometric progression
- Fibonacci sequences and be able to apply and use them
- How to deduce the nth term of linear sequences
- How to deduce the nth term of quadratic sequences

By the end of this unit students will know and understand:

- How to solve simultaneous equations
- How to form simultaneous equations and solve
- How to solve simultaneous equations with one linear and one quadratic
- How to recognise the equation of a circle
- Solve simultaneous equations involving circles

Direct and inverse proportion

By the end of this unit students will know and understand:

How to recognise

- Circle theorems and how to calculate missing angles using them
- Circle theorem proofs

Proof

By the end of this unit students will know and understand:

- How to argue mathematically to show algebraic expressions are equivalent and use algebra to support arguments
- Proof using algebra

Functions

By the end of this unit students will know and understand:

 How to interpret function notation

- How to transform shapes and recognise a combination of transformations
- Enlarge by a negative scale factor

Constructions and loci

By the end of this unit students will know and understand:

- How to construct angle bisectors and perpendicular bisectors
- How to construct a perpendicular to a given line from a given point
- How to solve loci problems
- That the perpendicular distance from a point to a line is the shortest distance to the line

- Continue and interpret sequences with surds
- How to plot straight line graphs
- Parallel lines and how to identify them
- How to find the equation of a line given 2 points
- How to use y=mx+c to identify perpendicular lines

Surds

By the end of this unit students will know and understand:

- Positive integer powers and associated real roots
- How to estimate powers and roots of any given number
- How to calculate

- direct and inverse proportion
- How to interpret worded problems involving direct and inverse proportion
- How to construct equations for direct and inverse proportion

Curves and graphs

By the end of this unit students will know and understand:

- Cubic graphs and how to sketch them
- Reciprocal graphs and how to sketch them
- Graphs of exponential functions
- Trig curves y=cosx

- Use substitution to evaluate functions
- Find the numerical value of composite functions
- Form expressions for composite function
- Form and use inverse functions

Transforming functions

By the end of this unit students will know and understand:

 How to sketch translations and reflections of a given function

Use of calculators and Iteration

By the end of this unit students will know and understand:

- How to efficiently use their calculators
- How to change the subject for iterative equations
- How to find approximate solutions to equations numerically using iterations

Vectors

By the end of this unit students will know and understand:

- Addition and subtraction of vectors
- Multiplication of vectors by a scalar
- Vectors
 represented on
 a diagram
- How to use vectors to

exactly with surds How to simplify surds Rationalising the denominator Expand double brackets involving surds	y=sinx, y=tanx • How to interpret the gradient at a point on a curve as the instantaneous rate of change • The gradient as rate of
Probability and probability diagrams By the end of this unit students will know and understand: • Probability and the outcome of probability experiments • Frequency trees and how to complete them • Relative frequency • Mutually exclusive events • How to calculate and interpret conditional	Inequalities By the end of this unit students will know and understand: • How to solve linear inequalities • How to represent inequalities on a number line • How to use the inverse to solve two-part inequalities • Solve quadratic inequalities

	with tree diagrams and Venn diagrams Set notation of Venn diagrams How to apply systematic listing strategies The product rule for counting	Use set notation Represent inequalities on a graph			
Кеу	Exact	Simultaneous	Chord	Enlarge	
Vocabulary	Rationalise	Proportion	Tangent	Reflect	
	Denominator	Direct	Alternate segment	Rotate	
	Surd	Inverse	Centre	Translate	
	Prime factor	Cubic	Circumference	Describe fully	
	Highest common factor	Reciprocal	Proof Function	Invariance	
	Lowest common	Exponential Gradient	Composite	Bisector Locus	
	multiple	Inequality	Inverse	Iteration	
	Fibonacci	Region	Stretch	Approximation	
	Nth term	Кевіоп	Translate	Vector	
	Arithmetic		Reflect	Scalar	
	Geometric				